FULL PAPER

Preparation of Glycosyltriazenes

Min Weng, Johannes C. Jochims*
Konstanz, Fachbereich Chemie der Universität

Received April 28th, 2000
Keywords: Carbohydrates, Heterocycles, Diazonium salts, Glycosides, Triazenes

Abstract

O\)-Unprotected glycosyltriazenes are prepared for the first time by coupling of 1 -anthraquinone-1-diazonium hydrogensulfate with β-glycopyranosylamines to afford 1-(anthraquinone-1-yl)-3-(β-glycopyranosyl)triazenes $\mathbf{3 a}-\mathbf{h}$. Acetylation of compounds $\mathbf{3}$ furnished the O-acetates $\mathbf{4 a - g}$. The stability of triazenes $\mathbf{3}$ results from fixation of the NH

proton in an intramolecular hydrogen bond to one of the anthraquinone carbonyl oxgen atoms. Treatment of triazenes 4 with tert-butyl hypochlorite afforded acetoglycosyl chlorides 6 and 1 -azidoanthraquinone 7. With acetic acid the triazene 4a formed tetra- O-acetyl- D-xylopyranose 9 together with 1aminoanthraquinone $\mathbf{1 0}$.

Triazenes are well known for their broad range of biological and therapeutic activities. For example, 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (DTIC) is an antitumor agent clinically used in the therapy of disseminated sarcoma of man, etc. [1]. The 1,3-bis(4amidiniumphenyl)triazene berenil has veterinary application as an antitrypanosomal agent, and has cytotoxic and anti-viral properties [2]. 3-Glycopyranosylmethyl-1-aryltriazenes, e.g. a, are active-site-directed irreversible inhibitors of diverse glycosidases [3-12]. The enzyme inhibition results from an irreversible alkylation of a specific methionine of the protein chain by a cation b [3, 4].
[17]. However, attempts to prepare O-unprotected glycosyltriazenes so far met with failure [16, 18, 19]. Thus, no glucosyltriazenes were produced by reaction of N (p-tolyl)- D-glucopyranosylamine with 4-methyl- or 2,5dichlorobenzenediazonium chloride [16]. O-Unprotected glycosyltriazenes would be of interest, inter alia, because of possible pharmaceutic activities.

Our interest in glycosyltriazenes arose from the observation that certain 1,3-disubstituted triazenes \mathbf{c} can be oxidized with tert-butyl hypochlorite to N-chlorotriazenes d, which with Lewis acids such as antimony pentachloride afford 1,3-diaza-2-azoniaallene salts \mathbf{e} as reactive intermediates, which undergo 1,3-dipolar cy-

Scheme 1 1-Aryl-3-(glycopyranosylmethyl)triazenes as glycosidase inhibitors

Little has been reported about other triazene derivatives of carbohydrates. Stable triazenes have been prepared by coupling of $1-, 3-, 5$ - or 6-aminodeoxy sugars with aryldiazonium salts [13-16]. Treatment of $2,3,4,6-$ tetra- O-acetyl- β - D-glucopyranosylamine with p-chlorobenzenediazonium tetrafluoroborate afforded 3-(2,3,4, 6-tetra- O-acetyl- β - D-glucopyranosyl)-1-(p-chlorophenyl)triazene, which with alcohols in the presence of an acidic catalyst furnished glycosides in moderate yields
cloaddition reactions with alkenes, alkynes, with 1,3butadienes, allenes, carbodiimides and cyanamides to afford 1,2,3-triazolium salts \mathbf{f} (Scheme 2) [20-24]. The question arose, whether R can also be a glycosyl substituent.

In conformity with literature reports [16], attempts to couple 2,4,6-trichlorobenzediazonium chloride with β - D-xylosylamine rendered mixtures of compounds containing only traces of triazene \mathbf{g} (Scheme 3).

Scheme 2 Preparation and cycloaddition reactions of 1,3-diaza-2-azoniaallene salts

Scheme 3 Attempted coupling of a glycosylamine with an aryldiazonium salt

We pondered that either the mobility or the position of the NH proton has an impact on the instability of glycosyltriazenes of type g. 1-Aryl-3-alkyltriazenes are known to form tautomeric equilibria, in which the NH proton is preferently positioned distal from the aryl substituent [25-27]. We suspected that a glycosyltriazene g with the NH proton fixed proximal to aryl, for instance by an intramolecular hydrogen bond to one of the carbonyl oxygen atoms of a 1-anthraquinonyl substituent, might be stable. Indeed, coupling of the 1-anthraquinonyldiazonium salt (2) [28] with β - D-xylopyranosylamine (1a) [29] afforded a first O-unprotected stable glycosyltriazene 3a in 72% yield. The yellow triazene 3a proved to be quite stable melting with decomposition above $140^{\circ} \mathrm{C}$. Correspondingly, the stable glycosyltriazenes $\mathbf{3 b}-\mathbf{h}$ were prepared in good yields. Acetylation of compounds $\mathbf{3 a}-\mathbf{g}$ furnished the triazene $\mathbf{4 a - g}$ (Scheme 4).

It is worth noting and can be taken as evidence for an intramolecular hydrogen bond ($c f$. Scheme 4, compounds $\mathbf{3 a}, \mathbf{4 a}$), that in no case the NH group of a compound $\mathbf{3}$ was acetylated, while N-acetylation of other 1-aryl-3-alkyltriazenes, e.g. of 3-methyl-1-p-tolyltriazene

(72\%)
Ar:

3b, R: H (58\%); 4b, R: Ac (95\%)

3e, R: H (49\%); 4e, R: Ac (83\%)

$\mathbf{3 g}, \mathrm{R}: \mathrm{H}(55 \%) ; \mathbf{4 g}, \mathrm{R}: \mathrm{Ac}(86 \%)$

3c, R: H (81\%); 4c, R: Ac (62\%)

3d, R: H (65\%); 4d, R: Ac (87\%)

3f, R: H (69\%); 4f, R: Ac (80\%)

Scheme 4 Preparation of 3-(anthraquinone-1-yl)-1-glycopyranosyltriazenes
[30, 31], has been reported to proceed at low temperatures without problems. In the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of the acetates $\mathbf{4 a}-\mathbf{g}$ relatively sharp signals observed at low field between 13.30 and 14.43 ppm for the NH protons are strong evidence in favour of the postulated intramolecular hydrogen bond. For reason of comparison, the NH signal for the triazene $4-\mathrm{MeC}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{N}-$ $\mathrm{NH}-\mathrm{Me}$ was found at $8.01 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$. In the ${ }^{13} \mathrm{C}$ NMR spectra of the glycosylazo compounds $\mathbf{3 a}-\mathbf{h}$, respectively $\mathbf{4 a}-\mathbf{g}$, the signals for the anomeric carbon atoms C-1' were observed between 92.4 and 95.0 ppm $\left(\mathbf{3 a}-\mathbf{h}, \mathrm{CD}_{3} \mathrm{SO} \mathrm{CD}_{3}\right)$, respectively between 94.4 and $98.0 \mathrm{ppm}\left(\mathbf{4 a}-\mathbf{g}, \mathrm{CDCl}_{3}\right)$, while the anomeric $\mathrm{C}-1$ atom of the glycosylamine $1 \mathbf{a}$ absorbs at higher field (86.9 ppm). Furthermore, very broad bands centered around $3225 \mathrm{~cm}^{-1}$ in the IR spectra of acetates $\mathbf{4 a}-\mathbf{g}$ are in line with intramolecularly hydrogen bonded NH protons.

In conclusion, in contrast to 1-aryl-3-glycosyltriazenes, unprotected 3-aryl-1-glycosyltriazenes $\mathbf{3}$ with the NH proton fixed in an intramolecular hydrogen bond are easily accessible and quite stable.

In order to test the transformation of triazenes $\mathbf{3}$ or $\mathbf{4}$ into N -chlorotriazenes \mathbf{d} (Scheme 2), the acetate $4 \mathbf{4}$ was treated at low temperatures $\left(-60{ }^{\circ} \mathrm{C}\right.$ to $\left.0^{\circ} \mathrm{C}\right)$ with tertbutyl hypochlorite (Scheme 5). However, instead of a chlorotriazene d, a mixture of 2,3,4-tri- O-acetyl- β - D xylopyranosyl chloride (6a), a trace of the α-anomer 6'a [32-34], and of 1-azidoanthraquinone (7) [35] was obtained. These compounds were identified by comparison of their NMR spectra with those of the authentic compounds. Repetition of the experiment in the presence of methanol again afforded a mixture of 6a, 6'a and 7, but no methylglycoside 8a. Only at $23^{\circ} \mathrm{C}$ in the presence of a large excess of methanol the glycoside $\mathbf{8 a}$
($\alpha: \beta \approx 5: 2$) $[36,37]$ was formed, obviously by reaction of the primarily formed chlorides 6a and 6'a with the alcohol. Similarly, from the gluco compound $\mathbf{4 b}$ and tert-butyl hypochlorite a mixture of the chloride $\mathbf{6 b}, 1-$ azidoanthraquinone 7 , and an unidentified carbohydrate was obtained with no indication of the intermediate formation of a N-chlorotriazene d. Finally, a solution of the triazene $\mathbf{4 a}$ in acetic acid was boiled under reflux to give a quantitative yield of a $1: 1$ mixture of the anomeric 1,2,3,4-tetra- O-acetyl- D-xylopyranoses 9 [3840] and of 1-aminoanthraquinone 10.

Triazenes can be looked at as aza analogues of amidines. Hence, an electrophile should preferently attack the monosubstituted nitrogen atom of a triazene, in conformity with recent ab initio calculations for the protonation of triazenes [41], although the energetic benefit for protonation of $\mathrm{N}-1$ as compared to protonation of $N-3$ was calculated to be small. Accordingly, the electrophilic chlorination of the triazene $4 \mathbf{a}$ with tert-butyl hypochlorite might be speculated to give an unstable N-1-chloro hemiaminal 5, which decomposes to the pyranosyl chloride 6a and azide 7. Similarly, protonation of $\mathbf{4 a}$ should give an intermediate $\mathbf{5}^{\prime}$, which decomposes to afford 9 and a monosubstituted triazene, which looses nitrogen to give the amine $\mathbf{1 0}$.

In conclusion, the chance to prepare a 1,3-diaza-2azoniaallene salt \mathbf{e} (Scheme 2, R: glycosyl) from a glycosyltriazene is small.

This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie. We are grateful to Dr. A. Geyer and Mrs. A. Friemel for running the 600 MHz NMR spectra and to Mr. S. Herzberger for technical assistance.

Scheme 5 Oxidation with tert-butyl hypochlorite and acetolysis of a 3-aryl-1-glycopyranosyltriazene

Experimental

The solvents were dried by standard methods. The melting points are uncorrected. - IR: Perkin-Elmer FTIR 1600; solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR: Bruker AC-250, WM-250, and DRX-600 spectrometers, JEOL JNM-LA 400 spectrometer; internal standard tetramethylsilane; coupling constants in Hz .

1-(Anthraquinone-1-yl-)3-(β-D-xylopyranosyl)triazene (3a)

1-Anthraquinonediazonium hydrogensulfate 2 [28] (3.32 g , $10 \mathrm{mmol})$ was added to a stirred cold $\left(-40^{\circ} \mathrm{C}\right)$ suspension of β-D-xylopyranosylamine 1a [29] ($1.49 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.17 \mathrm{~g}, 11 \mathrm{mmol})$ in pyridine $(40 \mathrm{ml})$ and MeOH $(20 \mathrm{ml})$. The brown suspension was warmed up to $0^{\circ} \mathrm{C}$ in the course of the next 30 min . After stirring at $0^{\circ} \mathrm{C}$ for 3 h the mixture was concentrated to a slurry, to which ice water $(600 \mathrm{ml})$ was added. Stirring and centrifugation afforded a slurry, which was again treated with $\mathrm{H}_{2} \mathrm{O}$. Centrifugation and lyophilization afforded a yellow powder, which at $-15^{\circ} \mathrm{C}$ crystallized from pyridine $(100 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(70 \mathrm{ml})$ to furnish a yellow powder ($2.91 \mathrm{~g}, 72 \%$); m.p. $140-142{ }^{\circ} \mathrm{C}$ (dec.). -$[\alpha]_{D}^{25}=-148.0$ (c $=0.1$, pyridine). - IR (nujol): $v / \mathrm{cm}^{-1}=3300$ (br, OH, NH), 1669, 1639, 1591. - ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta / \mathrm{ppm}=3.24-3.37\left(\mathrm{~m}, \mathrm{H}-4{ }^{\prime}, 5{ }^{\prime}\right), 3.45-3.54(\mathrm{~m}$, H-2', 3^{\prime}), 3.90 (dd, $\left.J=5.0,10.8, \mathrm{H}-5{ }^{\prime \prime}\right), 4.44$ (d, $J=8.4, \mathrm{H}-1^{\prime}$), 5.13 (d, $J=4.8$), 5.17 (d, $J=4.7$), $5.21(\mathrm{~d}, J=5.6)(3 \mathrm{OH})$, $7.72-8.10\left(\mathrm{~m}, 7 \mathrm{H}\right.$, aryl), $12.99(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): \delta / \mathrm{ppm}=67.8,69.5,72.2,77.1\left(\mathrm{C}-2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}\right)$, 98.0 (C-1'), 113.6, 119.5, 120.6, 126.3, 126.7, 132.0, 133.3, 133.5, 134.3, 134.5, 135.7, 143.6 (=C), 181.7, 185.4 (C=O). $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O} \quad$ Calcd.: C 56.85 H 4.77 N 10.47 (401.4) Found: C 56.50 H 4.72 N 10.36.

1-(Anthraquinone-1-yl-)3-(2,3,4-tri-O-acetyl- β-D-xylopyranosyl)triazene (4a)
At $0{ }^{\circ} \mathrm{C} \mathrm{Ac}_{2} \mathrm{O}(20 \mathrm{ml})$ was added dropwise to a stirred solution of $\mathbf{3 a}(4.01 \mathrm{~g}, 10 \mathrm{mmol})$ in pyridine (50 ml). After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h and at $23{ }^{\circ} \mathrm{C}$ for 12 h the solvent was evaporated. The oily residue solidified when stirred in ice water (400 ml). Isolation, drying, and precipitation from EtOH $(36 \mathrm{ml}) / \mathrm{CHCl}_{3}(18 \mathrm{ml})$ afforded a yellow powder $(3.56 \mathrm{~g}$, 70%); m.p. $172-174{ }^{\circ} \mathrm{C}$ (dec.). $-[\alpha]_{\mathrm{D}}^{25}=-74.5$ ($\mathrm{c}=0.1$, $\left.\mathrm{CHCl}_{3}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=3222(\mathrm{br}, \mathrm{NH}), 1755,1674$, $1645,1592,1582 .-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=$ 1.97, 2.07, $2.09\left(\mathrm{CH}_{3}\right), 3.56$ (dd, $J=10.1,11.3, \mathrm{H}-5$ '), 4.33 (dd, $\left.J=5.4,11.4, \mathrm{H}-5^{\prime \prime}\right), 4.85(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~m}$, 2H) (H-4', $\left.1^{\prime}, 2^{\prime}, 3^{\prime}\right), 7.67-8.31$ (m, aryl), 13.37 (NH). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=20.6,20.7(2 \mathrm{C})$ $\left(3 \mathrm{CH}_{3}\right), 64.8,68.8,70.5,72.6\left(\mathrm{C}-2^{\prime}, 3^{\prime}, 4^{\prime}, 5{ }^{\prime}\right), 95.0(\mathrm{C}-1 '), 114.9$, $119.9,121.8,127.0,127.4,132.7,133.9,134.1,134.2,134.4$, 135.3, 143.8 (=C), 169.2, 169.8, 170.3, 182.6, $185.8(\mathrm{C}=\mathrm{O})$. $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{9} \quad$ Calcd.: C 58.94 H 4.55 N 8.25 (509.5) Found: C 58.83 H 4.37 N 8.00.

1-(Anthraquinone-1-yl-)-3-(β-D-ribopyranosyl)triazene (3b)

From β-D-ribopyranosylamine 1b [42] ($1.49 \mathrm{~g}, 10 \mathrm{mmol}$) in the manner described for 3a. The reaction mixture was concentrated to half of its volume and then poured into ice water $(200 \mathrm{ml})$. Workup as described afforded a brown powder,
which was stirred for 5 min in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$. Filtration furnished a yellow powder ($2.28 \mathrm{~g}, 58 \%$); m.p. $126-128^{\circ} \mathrm{C}$. $-[\alpha]_{\mathrm{D}}^{25}=-94.0$ (c = 0.1, pyridine). -IR (nujol): $v / \mathrm{cm}^{-1}=$ 3410, 3272 (br, OH, NH), 1667, 1637, 1590, 1574. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta / \mathrm{ppm}=3.60(\mathrm{t}, J=10.2$, H-5'), 3.67 (m, H-5", 2^{\prime}), 3.71 (m, H-4'), 3.97 ($\left.\mathrm{s}, \mathrm{br}, \mathrm{H}-3^{\prime}\right)$, 4.72 (d, $J=8.1, \mathrm{H}-1$ '), 4.83 (d, $J=6.2, \mathrm{OH}-4$ '), 4.93 (m, OH$2^{\prime}, 3^{\prime}$), $7.84-8.21$ (aryl), $13.10(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR (150.9 MHz , $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): \delta / \mathrm{ppm}=64.3,67.1,69.7,70.4\left(\mathrm{C}-2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}\right)$, 94.4 (C-1'), 115.6, 119.7, 120.7, 126.5, 126.9, 132.3, 133.6, 133.8, 134.5, 134.7, 135.9, 143.8 (=C), 182.1, 185.7 (C=O). $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ Calcd.: C 58.16 H 4.62 N 10.71 (392.4) Found: C 58.56 H 4.99 N 10.26.

1-(Anthraquinone-1-yl-)-3-(2,3,4-tri-O-acetyl- β - D-ribopyranosyl)triazene (4b)

From 3b ($3.92 \mathrm{~g}, 10 \mathrm{mmol}$) in the manner described for $\mathbf{4 a}$. The product was isolated from its aqueous suspension by centrifugation. The yellow residue was washed with $\mathrm{H}_{2} \mathrm{O}(5 \times$ $20 \mathrm{ml})$ and lyophilized to afford a yellow powder (4.84 g , 95%), which can be recrystallized at $-15{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(75 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(12 \mathrm{ml}) ;$ m.p. $170-173{ }^{\circ} \mathrm{C}(\mathrm{dec}) ..-[\alpha]_{\mathrm{D}}^{25}=$ $-40.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)$. $-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): ~ v / \mathrm{cm}^{-1}=3228(\mathrm{br}$, NH), 1750, $1673,1646,1591,1581 .-{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=2.05,2.11,2.17\left(3 \mathrm{CH}_{3}\right), 3.96(\mathrm{dd}, J=7.8$, 11.6), 4.23 (dd, $J=4.1,11.6$) (H-5',5"), 5.12 (d, $\left.J=6.6, \mathrm{H}-1^{\prime}\right)$, 5.25 (m, H-2', 4^{\prime}), 5.70 (t, $\left.J=2.9, \mathrm{H}-3^{\prime}\right), 7.69-8.29$ (aryl), $13.37(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=20.7$, 20.8 (2C) $\left(3 \mathrm{CH}_{3}\right), 63.0,66.6,67.3,68.7\left(\mathrm{C}-2^{\prime}, 3^{\prime}, 4^{\prime}, 5 '\right), 92.4$ (C-1'), 114.8, 120.1, 121.8, 127.0, 127.3, 132.8, 133.9, 134.2, 134.3, 135.3, 143.9 (=C), 169.4, 169.7, 169.8, 182.5, 185.9 ($\mathrm{C}=\mathrm{O}$).
$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{9} \quad$ Calcd.: C 58.94 H 4.55 N 8.25 (509.5) Found: C 58.62 H 4.75 N 7.89.

1-(Anthraquinone-1-yl-)-3-(β-D-glucopyranosyl)triazene

 (3c)From β-D-glucopyranosylamine [29, 43] ($1.79 \mathrm{~g}, 10 \mathrm{mmol}$) in the manner described for 3a. The crystalline red-orange product was stirred in ice water (200 ml) for 15 min . Filtration and recrystallization at $-15^{\circ} \mathrm{C}$ of the residue from pyridine (30 ml)/MeOH (15 ml) afforded brown prisms (3.48 g , 81%); m.p. $150-152^{\circ} \mathrm{C}$ (dec.). $-[\alpha]_{\mathrm{D}}^{25}=-54.2$ (c $=0.1$, pyridine). - IR (nujol): $v / \mathrm{cm}^{-1}=3100-3400(\mathrm{br}, \mathrm{OH}, \mathrm{NH})$, 1673, $1643,1589 .-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta /$ ppm $=3.39\left(\mathrm{~m}, \mathrm{H}-3^{\prime}, 4^{\prime}, 5^{\prime}\right), 3.59\left(\mathrm{~m}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 3.83\left(\mathrm{~m}, \mathrm{H}^{\prime}-6^{\prime \prime}\right)$, 4.53 (d, $\left.J=8.4, \mathrm{H}^{\prime} 1^{\prime}\right), 4.67(\mathrm{t}, J=5.6, \mathrm{OH}-6$ '), $5.10(\mathrm{~d}, J=$ 4.7), 5.15 (d, $J=4.1$) ($\left.\mathrm{OH}-4^{\prime} 3^{\prime}\right), 5.21\left(\mathrm{~d}, J=5.4, \mathrm{OH}-2^{\prime}\right)$, $7.65-8.05$ (m, aryl), $12.95(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): \delta / \mathrm{ppm}=61.2,70.0,72.3,77.1,79.2(\mathrm{C}-$ $\left.2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}\right)$, 97.4 (C-1'), 113.5, 119.5, 120.6, 126.3, 126.7, 131.9, 133.1, 133.3, 134.3, 134.5, 135.7, 143.5 (=C), 181.6, 185.3 (C=O).
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O} \quad$ Calcd.: C 55.68 H 4.91 N 9.74 (431.4)

Found: C 55.50 H 4.63 N 9.54.
1-(Anthraquinone-1-yl-)-3-(2,3,4,6-tetra-O-acetyl- β - D glucopyranosyl)triazene (4c)
From $3 \mathbf{c}(4.31 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for $\mathbf{4 a}$. Crystallization at $-15^{\circ} \mathrm{C}$ from $\mathrm{CHCl}_{3}(65 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(7 \mathrm{ml})$
afforded a brown powder ($4.32 \mathrm{~g}, 62 \%$); m.p. $190-191^{\circ} \mathrm{C}$ (dec.). $-[\alpha]_{\mathrm{D}}^{25}=-65.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}$ $=3216(\mathrm{br}, \mathrm{NH}), 1756,1673,1647,1591,1576 .-{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=1.95,2.05,2.07,2.11\left(4 \mathrm{CH}_{3}\right)$, 3.94 (ddd, $J=2.2,4.6,10.0, \mathrm{H}-5 '), 4.23$ (dd, $J=2.1,12.5$), 4.34 (dd, $J=4.7,12.5$) (H-6',6"), 4.93 (d, $J=8.5, \mathrm{H}-1$ '), 5.28 $\left(\mathrm{t}, J=9.5, \mathrm{H}-4^{\prime}\right), 5.39\left(\mathrm{t}, J=9.5, \mathrm{H}-3^{\prime}\right), 5.43\left(\mathrm{t}, J=9.4, \mathrm{H}-2^{\prime}\right)$, $7.72-8.27$ (m, aryl), $13.43(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=20.6(2 \mathrm{C}), 20.7,20.8\left(4 \mathrm{CH}_{3}\right), 62.0(\mathrm{C}-6$ ' $)$, 68.1 (C-4'), 70.4 (C-2'), 73.4 (C-3'), 74.1 (C-5'), 94.7 ($\left.\mathrm{C}-1^{\prime}\right)$, 115.1, 119.8, 122.0, 127.0, 127.4, 132.8, 134.0, 134.2, 134.3, 134.4, 135.3, 143.7 (=C), 169.1, 169.4, 170.4, 170.8, 182.6, 185.8 ($\mathrm{C}=\mathrm{O}$).
$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{11} \cdot \mathrm{CHCl}_{3}$ Calcd.: C 49.70 H 4.03 N 6.00
(700.9)

Found: C 49.52 H 4.07 N 6.05 .
1-(Anthraquinone-1-yl-)-3-(α-L-rhamnopyranosyl)triazene (3d)
From α-D-rhamnopyranosylamine $\mathbf{1 d}$ [29] ($1.63 \mathrm{~g}, 10 \mathrm{mmol}$) in the manner described for 3a. Crystallization at $23^{\circ} \mathrm{C}$ from DMSO (50 ml) afforded a yellow powder ($2.71 \mathrm{~g}, 65 \%$); m.p. $155-158{ }^{\circ} \mathrm{C}$ (dec.). $-[\alpha]_{\mathrm{D}}^{25}=-90(\mathrm{c}=0.1$, pyridine). -IR (nujol): $v / \mathrm{cm}^{-1}=3100-3500$ (br, NH, OH), 1670, 1634 , 1589, 1573. - ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta / \mathrm{ppm}=$ 1.25 (d, $J=5.1, \mathrm{CH}_{3}$), 3.30 (m, H-4',5'), 3.39 (br, m, H-3'), 3.90 (br, H-2'), 4.65 (d, $\left.J \approx 5.0, \mathrm{OH}-2^{\prime}\right), 4.68$ (d, $J=6.0, \mathrm{OH}-$ $\left.3^{\prime}\right), 4.81$ (s, H-1'), 4.82 (d, $J=4.5, \mathrm{OH}-4$ '), $7.72-7.91$ (m, aryl), $13.00(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}, 323$ $\mathrm{K}): \delta / \mathrm{ppm}=18.0\left(\mathrm{CH}_{3}\right), 71.4,71.9,73.8,74.4\left(\mathrm{C}-2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}\right)$, 94.8 (C-1').
$\begin{array}{lllll}\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O} & \text { Calcd.: C } 57.83 & \text { H } 5.10 & \mathrm{~N} 10.12 \\ (415.4) & \text { Found: C } 57.36 & \text { H } 4.97 & \text { N } 9.95 .\end{array}$
1-(Anthraquinone-1-yl-)-3-(2,3,4-tri-O-acetyl- α-L-rhamnopyranosyl)triazene ($\mathbf{4 d}$)
From 3d (4.15 g, 10 mmol) in pyridine (200 ml) $/ \mathrm{Ac}_{2} \mathrm{O}$ $(60 \mathrm{ml})$ in the manner described for $\mathbf{4 a}$. The product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. Filtration and evaporation of the filtrate afforded a yellow powder, which was crystallized at $5{ }^{\circ} \mathrm{C}$ from $\mathrm{CHCl}_{3}(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$ to furnish a yellow powder ($4.56 \mathrm{~g}, 87 \%$); m.p. $195-197{ }^{\circ} \mathrm{C}$ (dec.). $-[\alpha]_{\mathrm{D}}{ }^{25}=$ $+25.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{v} / \mathrm{cm}^{-1}=3228(\mathrm{br}$, NH), 1749, 1673, 1645, $1591,1576 .-{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=1.41(\mathrm{~d}, J=6.1), 2.03,2.11,2.19\left(4 \mathrm{CH}_{3}\right)$, 3.79 (m, H-5'), 5.08 (d, $J=1.2, \mathrm{H}-1$ '), 5.17 (dd, $J \approx 2,10$, H$\left.3^{\prime}\right), 5.26\left(\mathrm{t}, J \approx 10, \mathrm{H}-4\right.$ '), 5.73 (dd, $\left.J \approx 1.2,2.0, \mathrm{H}-2^{\prime}\right), 7.68-$ $8.30\left(\mathrm{~m}\right.$, aryl), $13.39(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=17.7,20.7,20.8,20.9\left(4 \mathrm{CH}_{3}\right), 69.5,70.6,71.7,73.2$ (C-2', $\left.3^{\prime}, 4^{\prime}, 5^{\prime}\right), 93.1$ (C-1'), 114.9, 120.2, 121.9, 127.0, 127.4, $132.9,134.0,134.1,134.2,134.3,135.4,143.9$ (=C), 169.8, 170.2, 170.4, 182.7, $185.9(\mathrm{C}=\mathrm{O})$.
$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9} \quad$ Calcd.: C 59.65 H 4.81 N 8.03
(523.5) Found: C 59.58 H 4.71 N7.88.

1-(Anthraquinone-1-yl-)-3-(2-acetamido-2-deoxy- β - D glucopyranosyl)triazene (3e)
From β-D-2-acetamido-2-deoxy-glucopyranosylamine $\mathbf{1 e}$ [43, 44] ($2.20 \mathrm{~g}, 10 \mathrm{mmol}$) in the manner described for $\mathbf{3 b}$. The product was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$. Filtration and crystallization of the residue at $-15{ }^{\circ} \mathrm{C}$ from pyridine $(60 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$ afforded a brown powder $(2.27 \mathrm{~g}, 49 \%)$; m.p. $207-209^{\circ} \mathrm{C}$ (dec.). $-[\alpha]_{\mathrm{D}}^{25}=+51.0(\mathrm{c}=0.05$, pyridine $)$.
-IR (nujol) $\mathrm{v} / \mathrm{cm}^{-1}=3530,3367,3275(\mathrm{br}, \mathrm{OH}, \mathrm{NH}), 1667$, $1651,1592,1574,1547 .-{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta / \mathrm{ppm}=1.67\left(\mathrm{CH}_{3}\right), 3.25\left(\mathrm{~m}, \mathrm{H}-4^{\prime}, 5 '\right), 3.48(\mathrm{td}, J=9.2,5.8$, H-3'), 3.54 (m, H-6'), 3.77 ($\mathrm{m}, \mathrm{J}=0.8,5.8,11.9$, H-6"), 3.79 (q, $\left.J=9.2, \mathrm{H}-2^{\prime}\right), 4.61\left(\mathrm{~d}, J=9.3, \mathrm{H}-11^{\prime}\right), 4.63(\mathrm{t}, J=5.8, \mathrm{OH}-$ $\left.6^{\prime}\right), 5.05$ (d, $\left.J=5.6, \mathrm{OH}-3^{\prime}\right), 5.12(\mathrm{~d}, J=5.3, \mathrm{OH}-4$ '), 7.78 (d, $J=9.3$, NH-2), $7.88-8.23$ (aryl), $13.01(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): \delta / \mathrm{ppm}=22.8\left(\mathrm{CH}_{3}\right)$, $54.2\left(\mathrm{C}-2^{\prime}\right)$, 61.0 (C-6'), 70.4 (C-4'), 74.1 (C-3'), 79.2 (C-5'), 95.9 (C-1'), 113.9, 119.2, 120.6, 126.4, 126.9, 132.3, 133.5, 133.8, 134.5, 134.6, 135.8, 143.7 (=C), 168.8, 182.0, 185.7 (C=O). $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ Calcd.: C 57.02 H 5.00 N 12.09 (463.4) Found: C 56.93 H 5.18 N 11.76.

1-(Anthraquinone-1-yl-)-3-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl)triazene (4e)
From 3e ($4.63 \mathrm{~g}, 10 \mathrm{mmol}$) in 140 ml pyridine (140 ml) and $\mathrm{Ac}_{2} \mathrm{O}(40 \mathrm{ml})$ in the manner described for $\mathbf{4 b}$. Crystallization at $-15{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml}) / 30 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$ afforded an orange powder ($4.83 \mathrm{~g}, 83 \%$); m.p. $201-203^{\circ} \mathrm{C}$ (dec.). $-[\alpha]_{\mathrm{D}}{ }^{25}$ $=-86.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=3424$, 3221 (br, NH), 1751, $1690,1674,1646,1592,1581 .-{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.86,2.08(6 \mathrm{H}), 2.10$ $\left(\mathrm{CH}_{3}\right), 3.94$ (ddd, $\left.J=2.3,4.7,10.0, \mathrm{H}-5 '\right), 4.23$ (dd, $J=2.3$, 12.3, H-6'), 4.34 (dd, $J=4.7,12.3$, H-6"), 4.39 (dd, $J=9.2$, $\left.10.0, \mathrm{H}-2^{\prime}\right), 5.00\left(\mathrm{~d}, J=9.1, \mathrm{H}^{\prime} \mathbf{1}^{\prime}\right), 5.29\left(\mathrm{t}, J=9.7, \mathrm{H}-4^{\prime}\right), 5.45$ (t, $\left.J=10.0, \mathrm{H}-3^{\prime}\right), 5.71$ (d, $J=9.1, \mathrm{NH}$), 7.63-8.22 (aryl), $13.30(\mathrm{NH}) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=20.6$, 20.7, 20.8, $23.3\left(4 \mathrm{CH}_{3}\right), 53.5\left(\mathrm{C}-2^{\prime}\right), 62.3$ (C-6'), 68.4 (C-4'), 73.0 (C-3'), 74.1 (C-5'), 95.2 (C-1'), 114.9, 119.7, 121.7, 126.9, $127.4,132.7,133.9,134.1,134.2,134.3,135.1,143.8$ (=C), $169.4,170.0,170.8,171.1,182.5,185.6$ (C=O).
$\begin{array}{lllll}\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{10} & \text { Calcd.: C } 57.93 & \text { H } 4.86 & \mathrm{~N} 9.65 \\ (580.5) & \text { Found: C } 57.74 & \text { H } 5.06 & \text { N } 9.44 .\end{array}$
1-(Anthraquinone-1-yl-)-3-(β-D-lactopyranosyl)triazene (3f)
From β - D-lactopyranosylamine $\mathbf{1 f}[45,46](3.41 \mathrm{~g}, 10 \mathrm{mmol})$ in pyridine $(80 \mathrm{ml}) / \mathrm{MeOH}(40 \mathrm{ml})$ in the manner described for $\mathbf{3 b}$. The product was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$. Stirring for 15 min and filtration afforded an orange-red powder $(4.09 \mathrm{~g}, 69 \%)$; m.p. $175-177^{\circ} \mathrm{C}(\mathrm{dec}) ..-[\alpha]_{\mathrm{D}}^{25}=-31.0(\mathrm{c}=$ 0.1 , pyridine). - IR (nujol): $v / \mathrm{cm}^{-1}=3200-3500$ (br, NH, OH), 1676, $1651,1595,1582 .-{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): \delta / \mathrm{ppm}=3.36(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 7 \mathrm{H}), 3.66(\mathrm{~m}$, 2 H), 3.83 (dd, $J=5.5,11.4,1 \mathrm{H}), 4.28, \mathrm{~d}, J=7.3, \mathrm{H}-1$ "), 4.53 (d, $J=4.6, \mathrm{OH}), 4.55(\mathrm{~d}, J=8.4, \mathrm{H}-1$ '), $4.66(\mathrm{t}, J \approx 6.1), 4.67$ (t, $J \approx 4.6$) (OH-6',6"), $4.79(\mathrm{~d}, J=5.2, \mathrm{OH}), 4.83(\mathrm{OH}), 5.11$ (d, $\left.J=4.6, \mathrm{OH}-2^{\prime \prime}\right), 5.32$ (d, $\left.J=5.5, \mathrm{OH}-2^{\prime}\right), 7.87-8.21$ (aryl), $13.15(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta / \mathrm{ppm}=$ 60.4 (2C), 68.2, 70.6, 72.0, 73.3, 75.2, 75.5, 77.1, 80.4 (C$\left.2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}\right), 96.9,103.8$ (C-1',1"), 114.1, 119.6, $120.8,126.5,126.9,132.3,133.6,133.8,134.5,134.7,136.0$, 143.7 (=C), 182.1, 185.8 (C=O).
$\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{12} \cdot \mathrm{H}_{2} \mathrm{O} \quad$ Calcd.: C 52.61 H 5.26 N 7.08 (593.5) Found: C 52.62 H 5.47 N 6.79.

1-(Anthraquinone-1-yl-)-3-($2^{\prime}, 3^{\prime}, 6^{\prime}, 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$-hepta-O-acetyl- β-D-lactopyranosyl)triazene ($\mathbf{(4)}$
From $\mathbf{3 f}(5.94 \mathrm{~g}, 10 \mathrm{mmol})$ in 70 ml pyridine $(70 \mathrm{ml})$ and $\mathrm{Ac}_{2} \mathrm{O}(35 \mathrm{ml})$ in the manner described for $\mathbf{4 b}$. Crystallization at $-15{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(24 \mathrm{ml})$ afforded a brown powder ($6.96 \mathrm{~g}, 80 \%$); m.p. $177-179{ }^{\circ} \mathrm{C}$ (dec.). -
$[\alpha]_{\mathrm{D}}^{25}=-26.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=3228$ (br, NH), 1753, 1674, 1646, 1592, 1581. - ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=1.94,1.98,2.07,2.08(6 \mathrm{H}), 2.14$, $2.17\left(\mathrm{CH}_{3}\right), 3.85\left(\mathrm{ddd}, J=2.0,4.9,9.9, \mathrm{H}-5{ }^{\prime}\right), 3.92(\mathrm{t}, J=6.9$, H-5"), 3.98 (t, $J=9.3, ~ H-4 '), ~ 4.12$ (dd, $J=7.4,11.2, ~ H-6 ")$, 4.16 (dd, $J=6.2,11.4$, H-6"), 4.18 (dd, $J=5.1,12.3$, H-6'), 4.54 (dd, $\left.J=1.8,12.2, \mathrm{H}-6^{\prime}\right), 4.56$ (d, $\left.J=7.9, \mathrm{H}-1^{\prime \prime}\right), 4.88$ (d, $J=8.6, \mathrm{H}^{\prime} 1^{\prime}$), 4.99 (dd, $\left.J=3.5,10.4, \mathrm{H}-3{ }^{\prime \prime}\right), 5.16$ (dd, $J=7.8$, 10.4, H-2'), 5.32 (t, $\left.J=9.1, \mathrm{H}^{\prime} 2^{\prime}\right), 5.37$ (m, H-3', $4^{\prime \prime}$), $7.73-$ 8.28 (m, aryl), $13.41(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=20.5,20.7(4 \mathrm{C}), 20.8,20.9\left(\mathrm{CH}_{3}\right), 60.7(\mathrm{C}-6 "), 62.2$ (C-6'), 66.6 (C-4"), 69.1 (C-2"), 70.6 (C-2'), 70.7 (C-5"), 71.0 (C-3'), 73.3 (C-3'), 74.8 (C-5'), 76.1 (C-4'), 94.5 (C-1'), 101.2 (C-1"), 115.0, 119.8, 121.9, 126.9, 127.3, 132.7, 133.9, 134.1, 134.2, 134.3, 135.3, 143.7 (=C), 169.1, 169.3, 169.9, 170.0, 170.1, 170.3, 170.4, 182.6, 185.8 (C=O).

$\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{19}$	Calcd.: C 55.24	H 4.98	N 4.83
(869.8)	Found: C 55.07	H 4.97	N 4.46.

1-(Anthraquinone-1-yl-)-3-(β-D-cellobiosyl)triazene ($\mathbf{3 g}$)

From β-D-cellobiosylamine $\mathbf{1 g}$ [46] ($3.41 \mathrm{~g}, 10 \mathrm{mmol}$) in pyridine $(100 \mathrm{ml}) / \mathrm{MeOH}(50 \mathrm{ml})$ in the manner described for 3b. The product was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$. After stirring for 5 min an orange-red powder was isolated by filtration. Crystallization at $5{ }^{\circ} \mathrm{C}$ from pyridine (30 ml) afforded a brown powder ($3.26 \mathrm{~g}, 55 \%$); m.p. $174-177^{\circ} \mathrm{C}$ (dec.). -$[\alpha]_{\mathrm{D}}^{25}=-52.0\left(\mathrm{c}=0.05\right.$, pyridine). -IR (nujol): $v / \mathrm{cm}^{-1}=$ 3200-3600 (br, OH, NH), 1676, 1650, 1592, 1580. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta / \mathrm{ppm}=3.15(\mathrm{~m}, 1 \mathrm{H})$, $3.33(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 5 \mathrm{H}), 3.67(\mathrm{~m}, 3 \mathrm{H}), 3.84$ $(\mathrm{m}, 1 \mathrm{H}), 4.56\left(\mathrm{~d}, J=8.4, \mathrm{H}-1{ }^{\prime \prime}\right), 4.59(\mathrm{t}, J=5.5), 4.67(\mathrm{t}, J=$ 5.6) (OH-6',6"), 4.98 (m, H-1', OH), $5.15(\mathrm{~d}, J=3.0, \mathrm{OH})$, $5.35(\mathrm{~d}, J=5.6, \mathrm{OH}), 5.59(\mathrm{~d}, J=6.0, \mathrm{OH}), 5.74(\mathrm{br}, \mathrm{OH})$, 7.74-8.10 (aryl), 13.04 (NH). - ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right): \delta / \mathrm{ppm}=60.3,61.0,70.0,71.9,73.2,75.2,76.4$, 76.7, 77.0, 80.2 (C-2',3',4',5',6',2",3",4",5",6"), 96.9, 103.1 (C$\left.1^{\prime \prime}, 1^{\prime}\right), 113.9,119.5,120.7,126.4,126.8,132.2,133.4,133.6$, $134.5,134.6,135.9,143.6$ (=C), 181.9, 185.6 (C=O).
$\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{12} \cdot \mathrm{H}_{2} \mathrm{O} \quad$ Calcd.: C 52.61 H 5.26 N 7.08 (593.5) Found: C 52.86 H 5.32 N 6.76.

1-(Anthraquinone-1-yl-)-3-($2^{\prime}, 3^{\prime}, 6^{\prime}, 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$-hepta-O-ace-tyl- β-D-cellobiosyl)triazene ($\mathbf{4 g}$)
From $\mathbf{3 g}(5.94 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for $\mathbf{4 b}$. Cristallization at $-15{ }^{\circ} \mathrm{C}$ from $\mathrm{CHCl}_{3}(50 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ afforded a yellow powder ($7.48 \mathrm{~g}, 86 \%$); m.p. $190-230^{\circ} \mathrm{C}$ (dec.). $-[\alpha]_{\mathrm{D}}^{25}=-36.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v / \mathrm{cm}^{-1}=3234(\mathrm{br}, \mathrm{NH}), 1753,1674,1646,1592,1581$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.94,2.00,2.03,2.06$, 2.09, 2.11, $2.15\left(7 \mathrm{CH}_{3}\right), 3.71$ (ddd, $J=2.6,4.3,10.0, \mathrm{H}-5{ }^{\prime \prime}$), 3.84 (ddd, $\left.J=2.0,5.1,10.0, \mathrm{H}^{\prime} 5^{\prime}\right), 3.97\left(\mathrm{t}, J=9.3, \mathrm{H}-4^{\prime}\right), 4.09$ (dd, $\left.J=2.4,12.4, \mathrm{H}-6^{\prime \prime}\right), 4.20$ (dd, $J=5.1,12.2, \mathrm{H}-6$ "), 4.41 (dd, $J=4.3,12.4, \mathrm{H}-6 "), 4.57$ (dd, $\left.J=2.0,12.2, \mathrm{H}-6^{\prime}\right), 4.59$ (d, $\left.J=7.9, \mathrm{H}-1^{\prime \prime}\right), 4.88$ (d, $\left.J=8.1, \mathrm{H}-1^{\prime}\right), 4.98$ (dd, $J=7.9$, 9.3, H-2"), 5.11 (t, $J=9.7, \mathrm{H}^{\prime} 4$ "), 5.18 (t, $\left.J=9.5, \mathrm{H}-3{ }^{\prime \prime}\right), 5.33$ (t, $\left.J \approx 9, \mathrm{H}-2^{\prime}\right), 5.35$ ($\mathrm{t}, J \approx 9, \mathrm{H}-3^{\prime}$), 7.72-8.25 (m, aryl), $13.36(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=20.48$ (3C), $20.53(2 \mathrm{C}), 20.6,20.8\left(7 \mathrm{CH}_{3}\right), 61.4(\mathrm{C}-6 "), 62.0(\mathrm{C}-6$ '), 67.7 (C-4"), 70.4 (C-2'), 71.5 (C-2"), 71.9 (C-5"), 73.0 (C$\left.3^{\prime}\right), 74.8$ (C-5'), 76.2 (C-4'), 94.5 (C-1'), 100.8 (C-1"), 114.9, $119.8,121.9,126.9,127.3,132.7,133.8,134.1,134.2,134.3$,
135.3, 143.7 (=C), 169.1, 169.3 (2 C), 169.8, 170.1, 170.3, 170.4, 182.5, 185.8 (C=O).
$\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{19} \quad$ Calcd.: C 55.24 H 4.98 N 4.83 (869.8)

Found: C 55.54 H 5.19 N 4.46.

1-(Anthraquinone-1-yl-)-3-(β-D-maltosyl)triazene (3h)

From β-D-maltosylamine $\mathbf{1 h}[45,46](3.41 \mathrm{~g}, 10 \mathrm{mmol})$ in pyridine $(100 \mathrm{ml}) / \mathrm{MeOH}(50 \mathrm{ml})$ in the manner described for 3b. Crystallization at $-15{ }^{\circ} \mathrm{C}$ from pyridine (45 ml)/ $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{ml})$ afforded a brown powder ($3.22 \mathrm{~g}, 56 \%$); m.p. 145$200{ }^{\circ} \mathrm{C} .-[\alpha]_{\mathrm{D}}^{25}=+15.0(\mathrm{c}=0.1$, pyridine). - IR (nujol): $\mathrm{v} / \mathrm{cm}^{-1}=3200-3600(\mathrm{br}, \mathrm{OH}, \mathrm{NH}), 1670,1639,1589,1585$ (shoulder). ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta / \mathrm{ppm}=3.12$ (br, 1H), 3.30 (br, H-2"), 3.44 (br, 1H), 3.45-3.58 (m, 5H), $3.65(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 4.52\left(\mathrm{~d}, J=8.4, \mathrm{H}-1 \mathrm{I}^{\prime}\right), 4.55(\mathrm{t}, J=$ 5.6), $4.63(\mathrm{t}, J=5.7)\left(\mathrm{OH}-6^{\prime}, 6{ }^{\prime \prime}\right), 4.94(\mathrm{~m}, 2 \mathrm{OH}), 5.11(\mathrm{~d}, J=$ 3.1, H-1"), $5.31(\mathrm{~d}, J=5.6, \mathrm{OH}), 5.55(\mathrm{~d}, J=6.0, \mathrm{OH}), 5.70$ (d, $J \approx 2, \mathrm{OH}$), $7.71-8.06$ (m, aryl), $13.00(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}$): $\delta / \mathrm{ppm}=60.7,60.9\left(\mathrm{C}-6^{\prime}, 6^{\prime \prime}\right), 69.9$, 71.9, 72.6, 73.4, 73.6, 76.8, 77.4, 79.6 (C-2', $3^{\prime}, 4^{\prime}, 5^{\prime}, 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}$, 5"), 97.2, 101.0 (C-1',1"), 113.8, 119.6, 120.8, 126.4, 126.9, 132.1, 133.4, 133.6, 134.3, 134.7, 135.9, 143.6 (=C), 181.9, 185.6 (C=O).
$\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{12} \quad$ Calcd.: C 54.26 H 5.08 N 7.30
(575.5) Found: C 53.97 H 5.17 N 7.08.

Reaction of $\mathbf{4 a}$ with tert-butyl hypochlorite

a) $\mathrm{At}-10^{\circ} \mathrm{C}$ in the dark $\mathrm{Bu}^{t} \mathrm{OCl}[47](1.19 \mathrm{~g}, 11 \mathrm{mmol})$ was added dropwise to a suspension of $4 \mathbf{4 a}(5.10 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 ml). After stirring at $0^{\circ} \mathrm{C}$ for 1 h the solvent was evaporated. Comparison with the ${ }^{1} \mathrm{H}$ NMR spectra of authentic compounds showed the residue $(5.55 \mathrm{~g})$ to be a mixture of 7 [35], and mainly the β-form 6a [32] together with a small amount of the α-compound 6'a [34]. - Unreported spectra of authentic compounds: 7: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=2141,2107$ $\left(\mathrm{N}_{3}\right), 1678(\mathrm{C}=\mathrm{O}), 1588 .-{ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta /$ $\mathrm{ppm}=124.4,126.3,126.8,127.5,132.4,133.8,133.9,134.3$, 134.5, 135.8, 141.1 (aryl), 181.9, 182.6 (C=O). - 6a: ${ }^{13}{ }^{3}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=20.7,20.8,20.9\left(3 \mathrm{CH}_{3}\right), 61.6$, 66.9, 67.3, 70.1, 88.5 (C-1,2,3,4,5), 169.1, 169.3, 169.8 (3 $\mathrm{C}=\mathrm{O}$). - 6'a: ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=20.58$, 20.62, $20.66\left(3 \mathrm{CH}_{3}\right), 60.9,68.3,68.9,71.0,90.8(\mathrm{C}-1,2,3,4,5)$, 169.78, 169.82, 169.90 ($3 \mathrm{C}=\mathrm{O}$).
b) $\mathrm{At}-60^{\circ} \mathrm{C}$ in the dark $\mathrm{Bu}^{t} \mathrm{OCl}(2.16 \mathrm{~g}, 20 \mathrm{mmol})$ was added dropwise to a suspension of $4 \mathbf{a}(5.10 \mathrm{~g}, 10 \mathrm{mmol})$ in MeOH $(50 \mathrm{ml}) / \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 12 h the solvent was evaporated. The residue (5.18 g) proved to be a mixture of $\mathbf{7}$ and $\mathbf{8 a}(\alpha: \beta \approx 5: 2)$ [37, 38, 48]).

1,2,3,4-Tetra-O-acetyl-D-xylopyranose (9)

A solution of $4 \mathbf{a}(5.01 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{AcOH}(250 \mathrm{ml})$ was boiled under reflux for 1 h . The solvent was evaporated and the residue was separated by column chromatography (5 cm $\times 60 \mathrm{~cm}$, silica gel, eluent CHCl_{3}) to afford $9(3.00 \mathrm{~g}, 94 \%$; $\alpha: \beta \approx 1: 1$) [38-40, 50] and 1-aminoanthraquinone (10) ($2.22 \mathrm{~g}, 99 \%$).

Reaction of $\mathbf{4 c}$ with tert-butyl hypochlorite

$\mathrm{At}-10^{\circ} \mathrm{C}$ in the dark $\mathrm{Bu}^{t} \mathrm{OCl}(1.19 \mathrm{~g}, 11 \mathrm{mmol})$ was added dropwise to a suspension of $4 \mathbf{c}(7.01 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(100 \mathrm{ml})$. After stirring at $0^{\circ} \mathrm{C}$ for 1 h the solvent was evaporated. The residue $(5.21 \mathrm{~g})$ consisted of a mixture of $\mathbf{6 b}[33$, 34, 49], of 7, and a carbohydrate of unknown structure. Two crystallizations at $-15{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml}) /$ pentane $(80 \mathrm{ml})$ afforded yellow needles of pure $7(2.01 \mathrm{~g}, 81 \%)$.

References

[1] J. A. Montgomery, Cancer Treatm. Rep. 1976, 60, 125
[2] D. G. Brown, M. R. Sanderson, J. V. Skelly, T. C. Jenkins, T. Brown, E. Garman, D. I. Stuart, S. Neidle, Embo J. 1990, 9 , 1329
[3] M. L.Sinnott, P. J. Smith, Biochem. J. 1978, 175, 525
[4] A. V. Fowler, I. Zabin, M. L. Sinnott, P. J. Smith, J. Biol. Chem. 1978, 253, 5283
[5] C. C. Jones, M. A. Kelly, M. L. Sinnott, P. J. Smith, J. Chem. Soc., Chem. Commun. 1980, 322
[6] O. P. Van Diggelen, H. Galjaard, M. L. Sinnott, P. J. Smith, Biochem. J. 1980, 188, 337
[7] P. J. Marshall, M. L. Sinnott, P. J. Smith, D. Widdows, J. Chem. Soc., Perkin Trans. 1 1981, 366
[8] O. P. Van Diggelen, A. W. Schram, M. L. Sinnott, P. J. Smith, D. Robinson, H. Galjaard, Biochem. J. 1981, 200, 143
[9] M. L. Sinnott, G. Tzotzos, S. E. Marshall, J. Chem. Soc., Perkin Trans. 2 1982, 1665
[10] P. A. Docherty, N. N. Aronson, Biochim. Biophys. Acta 1987, 914, 283
[11] W. McDowell, A. Tlusty, R. Rott, J. N. BeMiller, J. A. Bohn. R. W. Meyers, R. T. Schwarz, Biochem. J. 1988, 255, 991
[12] T. Mega, T. Nishijima, T. Ikenaka, J. Biochem. 1990, 107, 641
[13] J. M. J. Tronchet, F. Rachidzadeh, Helv. Chim. Acta 1976, 59, 2855
[14] J. M. J. Tronchet, F. Rachidzadeh, Helv. Chim. Acta 1979, 62, 971
[15] G. Zosimo-Landolfo, J. M. J. Tronchet, N. Bouchy, Pharm. Acta Helv. 1990, 65, 254
[16] R. Kuhn, G. Krüger, A. Seeliger, Liebigs Ann. Chem. 1959, 628, 240
[17] O. Larm, K. Larsson, M. Wannong, Acta Chem. Scand. 1977, B31, 475
[18] V. M. Berezovskii, E. P. Rodionova, Zh. Obshch. Khim. 1956, 26, 745; Chem. Abstr. 1956, 50, 14557f
[19] P. Karrer, H. F. Meerwein, Helv. Chim. Acta 1935, 18, 1130
[20] W. Wirschun, J. C. Jochims, Synthesis 1997, 233
[21] W. Wirschun, G.-M. Maier, J. C. Jochims, Tetrahedron 1997, 53, 5755
[22] N. Al-Masoudi, N. A. Hassan, Y. A. Al-Soud, P. Schmidt, A. E. M.Gaafar, M. Weng, S. Marino, A. Schoch, A. Amer, J. C. Jochims, J. Chem. Soc., Perkin Trans. I 1998, 947
[23] W. Wirschun, M. Winkler, K. Lutz, J. C. Jochims, J. Chem. Soc., Perkin Trans. I 1998, 1755
[24] W. Wirschun, J. Prakt. Chem. 1998, 340, 300
[25] H. Iwamura, K. Albert, A. Rieker, Tetrahedron Lett. 1976, 17, 2627
[26] K. Vaughan, J. Chem. Soc., Perkin Trans. 2 1977, 17
[27] M. A. Kelly, M. Murray, M. L. Sinnott, J. Chem. Soc., Perkin Trans. 2 1982, 1649
[28] P. Sutter, C. D. Weis, J. Heterocycl. Chem. 1982, 19, 997
[29] N. J. Cusack, D. H. Robinson, P. W. Rugg, G. Shaw, R. Lofthouse, J. Chem. Soc., Perkin Trans. 1974, 73
[30] O. Dimroth, Ber. Dtsch. Chem. Ges. 1905, 38, 670
[31] M. B. Kroeger Smith, B. F. Schmidt, G. Czerwinski, L. A. Taneyhill, E. J. Snyder, A. M. Kline, C. J. Michejda, R. H. Smith, Chem. Res. Toxicol. 1996, 9, 466
[32] P. L. Durette, D. Horton, Carbohydr. Res. 1971, 18, 57
[33] L. P. Egan, T. G. Squires, J. R. Vercellotti, Carbohydr. Res. 1970, 14, 263
[34] G. J. F. Chittenden, Carbohydr. Res. 1992, 242, 297
[35] L. K. Dyall, J. A. Ferguson, Aust. J. Chem. 1992, 45, 1991
[36] A. De Bruyn, M. Anteunis, R. van Rijsbergen, M. Claeyssens, P. Kovác, J. Carbohydr. Chem. 1983, 1, 301
[37] E. Petráková, J. Schraml, Carbohydr. Res. 1983, 117, 285
[38] K. Bock, C. Pedersen, Acta Chem. Scand. 1975, B29, 258
[39] J.-P. Utille, P. J. A.Vottero, Bull. Soc. Chim. Fr. 1976, 387
[40] J.-P. Utille, P. J. A.Vottero, Carbohydr. Res. 1980, 85, 289
[41] A. Schmiedekamp, R. H. Smith, C. J. Michejda, J. Org. Chem. 1988, 53, 3433
[42] N. J. Cusack, B. J. Hildick, D. H. Robinson, P. W. Rugg, G. Shaw, J. Chem. Soc., Perkin Trans. 1 1973, 1720
[43] A. Lubineau, J. Augé, B. Drouillat, Carbohydr. Res. 1995, 266, 211
[44] L. M. Likhosherstov, O .S. Novikova, V. A. Derevitskaja, N. K. Kochetkov, Carbohydr. Res. 1986, 146, C1
[45] E. Kallin, H. Lönn, T. Norberg, M. Elofsson, J. Carbohydr. Chem. 1989, 8, 597
[46] C. O. Mellet, J. L. J. Blanco, J. M. G. Fernández, J. Fuentes, J. Carbohydr. Chem. 1993, 12, 487
[47] J. Mintz, C. Walling, Org. Synth., Coll. Vol. V, Wiley, New York 1973, p. 184
[48] V. Petroviâ, S. Tomiâ, D. Ljevakoviâ, J. Tomaliâ, J. Carbohydr. Chem. 1997, 302, 13
[49] K. Bock, C. Pedersen, J. Chem. Soc., Perkin Trans. 2 1974, 293
[50] B. Helferich, E. Günther, W. W. Pigman, Ber. Dtsch. Chem. Ges. 1939, 72, 1953

Address for correspondence:
Prof. Dr. J. C. Jochims
Universität Konstanz, Fachbereich Chemie
Fach M 733
D-78434 Konstanz
Fax: Internat. code (0)7531-883898
e-Mail: johannes.jochims@uni-konstanz.de

